BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP.

نویسندگان

  • Daniela Salles
  • Andre L Mencalha
  • Ivanildce C Ireno
  • Lisa Wiesmüller
  • Eliana Abdelhay
چکیده

Expression of BCR-ABL oncoprotein in chronic myeloid leukemia (CML) promotes neoplastic transformation of hematopoietic stem cells through modulation of diverse pathways. CML is a multistep disease, which evolves as a chronic phase and progresses to blast crisis. This progression has been associated with the appearance and accumulation of new cytogenetic anomalies and mutations. The mechanisms underlying the genomic instability promoted by BCR-ABL remain obscure. Through comparative analysis of different DNA double-strand break (DSB) repair mechanisms as a function of the BCR-ABL status in human megakaryocytic and CML cell lines, we found that BCR-ABL upregulates error-prone DSB repair pathways [single-strand annealing (SSA) and non-homologous end joining] rather than the high-fidelity mechanism of homologous recombination. Intriguingly, expression analysis of DSB repair pathway choice determining factors revealed increased levels of the protein CtIP in BCR-ABL-positive cells, particularly in response to irradiation. Moreover, treatment with the BCR-ABL kinase inhibitor, Imatinib Mesylate, abolished CtIP accumulation. When we silenced CtIP expression in cells with functional BCR-ABL, SSA enhancement by BCR-ABL was completely abrogated. Importantly, we also provide evidence that BCR-ABL stimulates DSB end resection, which is mediated by CtIP. Briefly, BCR-ABL promotes mutagenic DSB repair with the DSB end-processing protein CtIP acting as the key mediator downstream of BCR-ABL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for human homologous recombination factors in suppressing microhomology-mediated end joining

DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed ...

متن کامل

RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.

The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 ph...

متن کامل

BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks.

The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomol...

متن کامل

Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection

Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modificatio...

متن کامل

Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair

Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB) repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ), single-strand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2011